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TECHNICAL NOTE 3761

TURBULENT SHEAR SPECTRA AND LOCAL ISOTROPY
IN THE LOW-SPEED BOUNDARY LAYER

By Virgil A. Sandborn and Willis H. Braun

SUMMARY

From measurements of turbulent shear spectra together with previ-
ously reported longitudinal turbulent energy spectra, the concept of
local isotropy in a low-speed boundary layer was exemined. Results of
these measurements and measurements of the time derivatives of turbulent
velocities in the x- and y-directions for various frequency bands showed
no evidence of local isotropy in the boundary layer. Several methods
('ba.sed on isotropy) of evaluating the turbulent dissipation term failed
to give consistent answers, further emphasizing a lack of local isotropy.

INTRODUCTION

The most rewarding treatment of turbulent motion to date has been
the statistical analysis introduced by Teylor (ref. 1). The analysis
was first restricted to isotropic turbulence, in which there is no shear
stress. In 1941, Kolmogoroff (refs. 2 and 3) hypothesized that the small-
scale motions in high Reynolds number shear flows also possess the prop-
erty of isotropy. This report examines evidence for the validity of
Kolmogoroff's hypothesis in one type of shear flow, the turbulent bound-

ary layer.

Previous tests of Kolmogoroff's theory of "local isotropy" have been
mede in turbulent wakes and Jets, in turbulent channel flow, and to some
extent in boundary layers. The first of these were the measurements
made in the wake of a circular cylinder by Townsend (ref. 4), who found
that several of the statistical quantities describing the flow agree with
predictions of the theory. Corrsin and Uberoi (ref. 5} measured the
cross correlation of the turbulent motion in a circular jet, and found
thet the correlation vanished for the small-scale motions, a possible
sign of local isotropy. Laufer (refs. 6 and 7) also found that the cross
correlation vanished in chamnel flow. However, his measurements of vor-
ticity components, which give greater weight to the small-scale motions,

- do not indicate local isotropy.
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The boundary layer, having one fixed edge and one free edge, is
intermediate between channel and wake flow. Measurements made to detect
local isotropy in the boundary layer have been inconclusive. Townsend
(ref. 8) measured local vorticity componets in the boundary layer and
compared them on the basis of complete isotropy. He found that the vor-
ticity is not isotropic. This may have been due partly to contributions
from the lerge-scale anisotropic motions and partly to the low Reynolds
mumber of the flow. Klebanoff's (ref. 9) measurements of vorticity show
an even more pronounced deviation from isotropy. He also obtained the
over-all energy balance by integration across the boundary layer and con-
cluded that the assumption of local isotropy was not adequate for the
flow.

SYMBOLS

The following symbols are used in this report:

A constant

da half width of channel

E(k) three-dimensional energy spectrum function associated with
wave-number space

F(n) one-dimensionsl energy spectrum function associated with
frequency

(k) one-dimensional energy spectrum function associated with wave-

nunber space

k weve number -

Ly longitudinal turbulence scalej; Ry dx

n frequency

P static pressure at wall

Ryy correlation coefficient of the turbulent velocities u and v

Ve Ve

correlation coefficient of the turbulent velocities u and v
uv,n ﬁn

at a particular point and frequency n, ——————=
2 2
'Jun Jvn

at a particular point for all frequencies,

PR "ot
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Ry correlation coefficient of u in the x-direction

t time

U local mean velocity

Uo mean velocity in free stream where viscous effects are
unimportant

V' velocity parameter in universal equilibrium theory

U, V,w instantaneous turbulent velocities in x-, y-, and

z-directions, respectively

u? ) v2 3 w2 mean squares of turbulent velocity fluctuations in x-, y-,
and z-directions, respectively

uv Reynolds turbulent shear stress

X direction parallel :to test wall and in general direction of
mean flow

v direction normel to test wall and spproximately normal to
meen flow

z direction normal to mean flow and perallel to test wall

e} boundary-layer thickness

€ turbulent energy dissipation per unit mass of fluid

1 length parameter in universal equilibrium theory

v kinematic viscosity

UNIVERSAL EQUILIBRIUM THEORY

Before a discussion of the present data is made, a brief review of
pertinent results of the universal equilibrium theory is necessary.
(For a full treatment of the subject, see ref. 10.)

Turbulence is pictured as a group of eddies of various sizes, the
largest of which derive energy from the mean motion of the fluld. These
large eddies are unstable and decay into smaller eddies. Kolmogoroff
suggests that, for "sufficiently high" Reynolds numbers, the smaller
eddies have a small period compared with that of the large eddies. The
small eddies are therefore almost statistically steady during & period
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of time charsascteristic of the large eddies or over-all flow. Further-
more, the small eddies are unaware of the anisotropy of the large eddies.
The smell eddies dissipate, by viscous action, nearly all the energy
entering the motion through the large eddies. The statistical properties
of the small eddies are then determined by only two numbers, the time
rate of specific energy dissipation ¢ and the kinematic viscosity v

of the fluid. From these parameters, a basic length and velocity are

defined as
5 1/a
n= {"¢

4":: (v5)1/4

1307

N1 and A* are measures of the characteristic length and velocity of the
smallest eddies. When lengths and velocities are referenced to these
parameters, the motion can be expressed in umiversal form. "

It is evident that the evaluation of & 1is of particular interest.
The general expression for & is (ref. 1)

cuv [ofB) + o) ¢ o) (2 g;)z .

SRS

The restriction to isotropic turbulence leads to the simple form (ref. 1)

(1)

€ = 15V (%)2 (2)

The energy spectrum may also be used to express g in isotropic turbu-
lence. From a Fourier transform of the Kirmén-Howarth (ref. 11) equa~-

tion, € may be written as ~
C_J
€= Zvﬁ k2E(k) dk (3)

where Xk is the wave number and E(k) is the three-dimensional spec-
trum function. This spectrum function E(k) is related to the
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measureble one-dimensional spectrum function f(k) for isotropic turbu-
lence by the following relation given by Heisenberg (ref. 12):

Ek) = 13 & 15 & f(k)] (4)

Thus, & expressed in terms of the measured spectrum function F(n) and
frequency is (ref. 13).

2va? n
g = 8“_;“_ n?F(n) + 4 { oF(n) dnan (5)
U
0 -

The relation between wave number and frequency is

K = ?TI"E ' (s)

The theory of local isotropy mekes certain predictions about the
form of the spectrum E(k) and thus F(n). The first concerns the form
of the spectrum in the inertial subrange of wave numbers. For this
range, inertiel forces predominate and the spectrum is independent of v
end has the form

E(k) ~ 62/3 x5/3 (7)

If, along with the spectrum F__z_(n) of the mean square of the lon-
a— 1 b
gitudinal component u2 » one also considers the spectrum of the shear
stress F__(n) certain contrasts should appear. At high frequencies,
uv

if the theory of local isotropy applies, the spectrum FW(n) should

vanish faster than the energy spectrum F._.(n) .
u

To test for local isotropy in the boundary layer, measurements of
the turbulent shear spectra will be examined. If local isotropy exists,
it is expected that the turbulent shear stress will vanish at the high
frequencies in agreement with the definition of isotropy. Secondly, the
energy spectrum of the longlitudinal turbulent velocity will be examined
for the existence of an inertial subrange. And finally, a specific re-
lation predicted by isotropy between the turbulent velocity derivatives
will be examined experimentally. From the velocity derivatives, a
range of eddy sizes can be inferred.
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MEASUREMENTS a

The data reported herein correspond to the flow described in refer-
ence 14. Figure 1 is a schematic diagram of the boundery-layer channel.
Measurements were made at the most forward and most aft of four stations
previously used. The flow conditions were maintained constant, so that
& Reynolds mumber per foot of 2.9x10° (which was equivalent to a free-
stream velocity of approximately 49 ft/sec) was maintained at station 1.
A constant pressure drop of approximately 25 inches of water below atmos-
pheric was maeintained in each suction compartment of the porous wall. A
gradual change in the porosity of the porous wall over the span of meas-
urements ceused some variation in flow conditions; however, this flow
variation is small compared with the random error of any single turbu-
lence measurement. The respective pressure gradients at the stations
were 0.012 and 0.194 pound per square foot per foot.

L70%

Mean and Turbulent Velocities

The mean velocity and turbulent intensity distributions for test
stations 1 and 4 are shown in figures 2 and 3. Details of technique
and equipment used for the measurements are reported in reference 15.
The mean velocity profiles are the same as reported in reference 14, but
the longitudinal turbulent velocities are recent measurements. They
agree with the values previously reported within approximately 10 per-
cent. The data of reference 14 and this report were taken over a 2-year
period; thus the 10-percent veriation represents gbout the limit of flow

repeatability. The turbulent intensity in the z-direction -\'wﬁ (not

shown) agrees with the turbulent intensity in the y-direction -\’vé, with
only a slight deviation near the wall. This has previously been noted
in reference 15.

Turbulent Shear Stress and Spectra

Faired curves of the turbulent shear stress at statlions 1 and 4 are
shown in figure 4. The turbulent shear-stress spectral distributions
are shown in figure 5. (The spectra of the longitudinal turbulent veloc-
ities corresponding to the same flow are reported in ref. 14.) Por the
high frequencies, the measured points are least accurate as they repre-
sent the difference of two nearly equal hot-wire signals. In certain
cases, negative values of Fﬁw‘r(n) were computed from the experimental
data. While there is no reason to rule out negative values of Fﬁ(n) 2 o
it was impossible to plot them on the logarithmic scale of figure 5.
The solid curves of figure 5 were obtained by subtracting curves faired
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through the data of individual hot wires. The fairings were such that
no negative values resulted. The integral I F_ﬁ(n) dn equals unity
0

within approximately 420 percent for all the spectra.

Determination of Time Derivatives

Statistical mean square time derivatives of the turbulent veloci-
ties u and v were measured. An electronic differentiation ecircuit
similar to the one described by Townsend (ref. 16) was used. A variable
electronic filter was employed to determine the contribution to the time
derivatives from different frequency bands. With the filter set to cut
out frequencies below a particular value of n, only the contributions
from the higher frequencies were recorded. It was expected that by
varylng the cutoff frequency, a minimum frequency associated with the
region of local isotropy might be found. The degree to which this ex-
pectation is met will be discussed later.

The high-frequency measurements proved difficult, as the measuring
system was sensitive to any nolse occurring in the area surrounding the
tunnel. In particular, the differentiating circuit amplified the high-
frequency nolse. However, it is believed that careful observation re-
duced error from this source to a small random amount. It is estimated
that the internal noise of the electronic system could have contributed
no more than a 10-percent error even at the highest frequencies. An
estimate of the accuracy of the time-derivative spectrum measurements
was not made.

DISCUSSION

Spectral Distribution

Figure 6 shows a comparison of u? 9 vz, and uv spectra near the

wall at station 1. Por the high frequencies, the percentage energy
density does not differ greatly for the three spectra. For the lower

frequencies, a dip is ususally noted in the ve spectrum. Measurements

of the w2 spectrum (not shown) are very nearly the same as the v2
spectrum with the possible exception of the dip at low frequencles. No
prarticular effect of pressure gradient was observed (this observation

corresponds to the trends of measurements for u? in ref. 14).

The assumption of local isotropy leads to a variation of F(n) as
n"5/3 (eq. (7)) for en inertial subrange of frequencies. In figure 7,
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a line with slope of -5/5 has been fitted to the u® data. The line of :

-5/3 slope approximates a region for each of the spectra. But the nature

of the spectral curves is such that any value of slope between zero and

roughly -7 would be reasonsble at some frequency. Thus, it is doubtful ‘
whether the fit of a line of -5/3 slope can be regarded as a check of

the assumption of an inertial subrange.

Comparison of Second Moments of Spectra

IN71¢)7

Any difference in behavior between the F.iﬁ(n) and F_z(n) spectra
u

at high frequencies can be more readily observed by comparing their sec-

ond moments. These second moments are.only a device for examining the
high-frequency portion of the spectra. Although the second moment of

the three-dimensional energy spectrum of isotropic turbulence represents

the viscous dissipation at any frequency in terms of the one-dimensional

energy spectrum, the dissipation must be expressed by a sum of the first

and second moments, as given by equation (5). Consequently, the second R
moments of the one-dimensional spectra presented here do not hdve a

physical meening. ZLaufer (ref. 6) has compared the second moments of

the spectral distributions of u2 and uv at a particular y-distance
in a two-dimensional channel (fig. 8). He notes that, at frequencies
over 1500 cycles per second, essentially no correlation exists between

uw and v; thus indicating that local lisotropy may occur.

This condition of vanishing correlation between u and v is nec-
essary for local isotropy to exist, but it is not a sufficient condition.
Since Laufer finds a very clear-cut region.in which isotropy may exist,
it appears worthwhile to apply the ssme tests to the boundary-layer data.
Figure 9 shows the comparison between the second moments of the uv and
u2 spectra for the measurements of this report. Inserted on figure 9

2

are the dimensional second moments n? u2 F__E(n) and -n° uv Fﬁ(n).
— u
The v2 moment at certain y-distances is also included on the dimensional
plots.
The dimensional curves give an idea of the relative values of the
three Reynolds stresses at any frequency. For local isotropy, the con-
ditions ule = -v-'g and uvy +» O would be expected. For the present ]

measurements, these conditions are not strongly evident. In the range
where the -5/3 power law fits the spectra, it was found that

u%s_v-g>2(ﬁ)n
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This corresponds to a cross correlation coefficient Ru_v‘ nZ 0.25, which
2

is still the same order of magnitude as the over-all value of Riﬁ = 0.5.

Thus, the shear stress in the high-frequency motions is relatively as
strong as in the low-frequency motions. Corrsin and Uberoi (ref. 5)
have pointed out that the approach to zero, at high frequencies, of the
correlation coefficient spectrum is a necessary condition for local
isotropy. Thus, it is concluded that there is no local isotropy in the
boundary layer. This point is further illustrated in figure 10, which
shows the distribution with frequency of the correlation coefficient

F_(n)
R_ /R_. = uv for two y-distances at station 4. These
uv,n’ uv F"‘Z(n) F‘z(n)
u v

spectra are not examined in detail here, since they represent the same
results shown in the second-moment curves.

It appears, then, that the boundary-layer flow investigated here,
and the chammel flow studied by Laufer in reference 6 have different
properties. Although the Reynolds numbers based on boundary-layer thick-
ness and chennel width for the two flows were roughly the same (the
former being slightly larger), evidence of local isotropy appears only
in the channel flow.

The range of frequencies over which a line of -5 /3 slope Tits the
u®” spectrum is very near the maximum of the second-moment curve. Al- .
though no physical meaning is as yet directly associated with the second-
moment curve, it is suggested by the present meastrements that for the
boundary-layer flow the maximum roughly separates the frequency range of
the large energy-containing eddies from the frequency range, wherein-
energy is dissipated by viscous forces.

Mean Square Velocity Derivatives

For isotropic turbulence it has been shown that (ref. 1)

(&) -3 () @)

If, the equivalence of space and time averages is assumed, equation (8)

can be written as
af _ 1 fav)? : (o)
dt 2 \dt
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The time derivatives can be obtained from hot-wire measurements.
Townsend (ref. 4) has measured the derivatives in a turbulent wake and
found them to agree with equation (9). From the agreement, he concluded
that a strong basis for local isotropy existed. However, for the bound-
ary layer, Townsend (ref. 8), as well as Klebanoff (ref. 9), found that
the derivatives did not obey equation (9). The measurements themselves
cannot indicate whether the disagreement was due to anisotropy at all
wave numbers or whether contributions from the anisotropic small-wave-
number region were overshadowing a high-frequency isotropic region. In
the latter case, the existence of local isotropy is still possible.

The spectra of the derivatives were measured in order to discover
the ranges of frequency over which the anisotropy exists. If there is

local isotropy then as stated previously at higher frequencies (.g_‘_l’_:.)z =

du du av

1(av\® ) equivalent i ¢ 5[V ana . ? e
3 (EE . equivalent comparison o 3T an it (_dTl:' or
frequencies above the filter cutoff frequency n 1s made in figure 11.

2
The terms most readily measured with the hot wire are 3(%%) and

au\2 | fav\2
(}_ﬁ) + %) The accuracy of measurement at the high frequencies is

low, as noted previously; however, the trends indicated by the data are
quite consistent for the complete set.

In general, the spectra do not indicate local isotropy. At two
points of station 1 (figs. 11(b) and (c)) the curves coincide for certain
frequencies, but the second-moment curves (figs. 9(b) and (c)) show that -
the cross correlations are not small in the same range. The coincildence
of these curves apparently has no significance. At the high frequencies
almost all the curves tend to diverge.

Turbulent Energy Dissipation

It was previously noted that the assumptions of local isotropy
greatly facilitate the calculation of the turbulent energy dissipation
€. While the present measurements do not Justify the use of isotropic
relstions in the boundary layer, it is still of interest to determine
the extent to which the isotropic predictions of ¢ are usable.

Four availsble methods of computing €& are

(1) Measurement of the terms of equation (1)

(2) Taylor's isotropic relation (eq. (2})

L90%
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(3) Evaluation from the longitudinal spectrum measurement (eq. (5))

(4) Predictions of an inertial subrange (eq. (7)) from which 52/ 3
muJ.ti_plied by a proportionslity constant can be obtained

Klebanoff (ref. 9) used method (1) by writing & as
o S5(223) (B - B - B - B - B -
&y -GF -6 @]

az 2
—s &and —5 neglected

a2 3n? -

(1a)

Of these terms, all but the last four derivatives were evaluated from
hot-wire measurements. The last four terms were evaluated by using iso-
tropic relations. Figure 12 shows the values of & obtained by Klebanoff.
Values of & obtained from methods (2) and (3) far Klebanoff's data are
elso shown.

Klebanoff's evaluation of & from equation (la) is used as a stand-
ard for comparison with other methods. The use of Taylor's equation
(ea. (2)) is found to predict & value too large for the dissipation for
the outer region of the boundary layer, while near the wall it gives a
value much too small. The value of & obtained from the spectrum
(method (3)) is too low over the complete boundary layer. This is partly
due to the assumption of isotropy in Heisenberg's transformation from
the three-dimensional spectrum to the one-dimensional spectrum. For
Klebanoff's flow, the values of & calculated by methods (2) and (3)
bracket the correct value over most of the boundary layer; however, near
the wall all isotropic evaluations are too low. The value of the pro-
portionality constant A of equation (7) (now written in terms of the
one-dimensional spectrum) which would scale up the curve of method (4)
to the reference curve in the middle region of the boundary layer (from
y/S of 0.2 to 0.6), is between 0.30 and 0.35. For the outer region
and near the wall, the constant varies sharply with y/S.

Figure 13 presents the values of € determined by methods (2), (3),
and (4) for the data of this report measured at station 1. The approxi-
metely zero pressure gradient layer of station 1 shows the same general
trends as Klebanoff's data, with the exception of the values near the
wall. Hence, for the boundary layer examined here, the true value of
the dissipation e is expected to fall between curves of methods (2)
and (3) in the outer region.
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Values of the universal equilibrium parsmeters 17 &and 2» computed
from g and v are plotted nondimensionally in figure 14. Over most

of the boundary layer, n-JuZ/v is equal approximately to 6, or 7 is
of the order of 10-5 inches, approximately 1000 mean free paths of air
at the test conditions. The value of 1 corresponds to a measuring
frequency of the order of 10,000 cycles per second.

CONCLUDING REMARKS

LY0%

Since, as a whole, the data presented here do not seem to describe
a locally isotropic flow, some of the conditions prescribed by the
theory are not met. - Possible reasons why local isotropy was not found
are as follows:

(1) The Reynolds number of the flow was too low.

(2) The physicel picture which is hypothesized for turbulence is -
not adequate.

(3) Energy may be entering the spectra at high wave numbers.

It is difficult to construct a Reynolds number that characterlzes
the turbulence. Batchelor (refs. 3 and 10) has converted the criterion
for local isotropy behind a grid from one involving Reynolds number to
one depending on a scale ratio. It is necessary that the scale of the
energy-containing eddies be very large compared with the scale of the
small, stable eddies. If L, is the macroscale of the turbulence, and

1 .is again the characteristic diameter of the small eddies, then
I_;x_ >> 1
|
For the boundary layer data presented here,
' —I}f— ~10% ~ 27

where L, 1is the x-direction scale of u2. From the foregoing it is

possible to estimate the number of steps occurring in the eddy cascade
process. If eddies break up into other eddies one~tenth their size,
there sre only two ranges of size or orders of megnitude present, where-
as if they break up into eddies one-half their size, there are about
seven orders of magnitude present. It may be that there is not a suf-
ficient spread in eddy size for the theory to apply to this shear flow.
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Batchelor and Townsend (ref. 17) have pointed out that, in general,
turbulence is not Gaussian at the high frequencies. This follows from
their measurements which indicate an uneven distribution (in space) of
the energy associated with the large wave-number region. It is impos-
sible to estimate the effect of this "spottiness” on local isotropy,
but it is certainly not the model assumed by the theory. The other sug-
gested reason for the apparent absence of isotropy 1s that energy may
be entering the spectrum at the high wave numbers. The measurements of
Klebanoff (ref. 9) might suggest an excess production of turbulent
energy in the high wave numbers, since near the wall the production and
dissipation are not equal. Possibly small eddies, as well as large ones,
are produced near the wall and diffuse outward into the boundary layer,
thus masking isotropy in the cascades initliated by the large eddies.

Lewis Flight Propulsion Laborsatory
National Advisory Committee for Aeronautics
Cleveland, Ohio, May 10, 1956
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